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Abstract. In this work, we present a general approach for deriving the normal product form 
of multimode boson exponential quadratic operators from the viewpoint of linear quantum 
trnnsfomtions in boson Fock space. The simplicity and generality of our formula are shown 
by some examples. 

1. Introduction 

Quantum transformation plays an important role in understanding and solving many 
problems in quantum mechanics. The original works in this field were performed by 
Bogoliubov [I]  and Valatin [2]  and, after these, transformation theory achieved many further 
developments [3,4]. 

Baiian and Brezin [5] presented the non-unitary Bogoliubov transformation theory in 
1969 and, recently, Zhang (one of the authors of this work) and Tang [6,7] and Yu [8] 
offered a general theory of linear quantum transformation (LQT) in Fock space. In all of 
these theories, the only assumption is that the commutation rules but not the Hermitian 
relation of operators are preserved after transformation. In [5 ] ,  the exponential quadratic 
form of the transformation operator for transformation matrix e M  is presented, where M is 
a 2n x 2n complex matrix and eM is an element of the sympletic group. In [6], the normal 
product exponential quadratic form of the transformation operator for the corresponding 
symplectic 2n x 2n partitioned matrix is presented 

A D  
M = ( E  E )  

However, none of these papers has shown a general approach to deriving the normal product 
form of the exponential (complete) quadratic operator (EQO). 

The E@ is widely used in quantum mechanics and quantum optics, such as the time 
evolution operator e-iHf and various transformation and state operators. etc. Usually, it 
provides us with a convenient method if the operator is transformed into its normal product 
form. Some special forms of the EQO have been transformed into normal product forms by 
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the so-called ‘IWOP’ technique in [9], but no general formula was obtained in that work. 
Here, we present a general approach to transform a multimode boson EQO into normal 
product form from the LQT viewpoint. 

This paper is organized as follows. In section 2, we introduce the LQT theory in short 
and obtain a general formula which relates an EQO and its normal product form from the 
LQT viewpoint. In section 3, we give some applications of this formula. Through these 
applications, the generality and simplicity of our approach can be seen. Before the theoretical 
statement, we give our notation in n-mode boson Fock space. We postulate a fundamental 
operator as follows 

A = (a’, 5)  (1) 

where at and ci are n-mode boson creation and annihilation operators, respectively, 

U+ = (a:, 4,. . . , a : )  ii = (al .  U * , .  . , , an).  (2) 

Here the notation ‘-’ is the transpose of n-dimensional space. These operators satisfy the 
following boson commutation rules: 

[ai,a;] =ai, [ ~ i , a j ]  = [a,?,a;] =o. (3) 

[A, A] = E-] (4) 

We can rewrite equation (3) in the equivalent form 

where 

c = ( o  - I  0 ’) 
and where I is the n-dimensional unit matrix. 

2. LQT theory and the transformation between EQO and its normal product form in 
n-mode boson Fock space 

Let us consider the following linear quantum transformation in n-mode boson Fock space: 

A ! =  U A U - ‘  = A .  M (6) 

where M E CaX2” and is called the LQT matrix and U is a bosonic operator cluster and is 
called an LQT operator. A’ still satisfies the boson commutation rule 

(7) 1 [A‘, A‘] = E- . 

In fact, this is the only assumption for the quantum transformation. This assumption 
demands that M E Sp(2n, c )  [5,7], i.e. 

MCh? = e. (8) 
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From equation (20a) of [SI, the LQT operator corresponding to matrix M is 

U = e x p ( f A I n M Z i ) .  (9) 

On the other hand, from equation (42) of [5], or from [7], we can immediately obtain 

which also corresponds to the matrix M = ($ :). We know that the corresponding 

LQT operator is determined up to a c number [7] as M is given, so that we have 

(1 1) U = c ,  U'. 

In fact, without any loss of generality, any S2 of boson EQO can be written in the following 
form: 

A3 -41 ( 2 :  A A A : )  A -1 =exp  [: - A  (A2  -A,) "1 
- - 

where A I  = A l ,  A2 = Az, or we have 

It is easy to see that 

i.e. exp (2; -41) is an element of Sp(2n,  c). 
-A3 

Therefore. we can regard any EQO as a LQT operator corresponding to the LQT matrix 

According to equations @)-(IO), we get the following formula: 

The c number is determined in the appendix as 

c = (det C')-''2. 

Equations (13)-(15) are our formulae for transforming an EQO into its normal product form. 
To derive an EQO'S normal product form using these equations we only have to transform 
the matrix 
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into its partitioned form 
M=(& A' D' e.). 

In fact, equation (14) is in agreement with equation (42) of [5 ]  except that there the constant 
number c is neglected. The above results can be easily extended to the cases which contain 
linear terms in LQT operators. One can take the following steps: 

where A ,  = (6, ; )  and 6 = a+ + k+, 6 = ii + i, provided that k+ and i satisfy 
( k + A ,  + 7 i 3 )  = k: ( iA2 + k'A3) = 

respectively, and 

I .  I 

The normal product form can be obtained from formula (14) by substituting A with Al .  
Thus, in the following, we consider only the pure quadratic cases. 

3. Some applications 

Now we transform some EQos into their normal product form using formulae (13) and (14) 
of the above section 

(i) exr8 and eprp. Here r is a 3 x 3 symmetric complex matrix, X = &(?I + a+) and 
P = -' (5 -a+). We can transform the two operators into Fock space as 75 

(16) e x r t = e x p [ i A ( r  r -r - r ) X A ]  

e P r P = e x p [ i A (  -r -r )EA]. (17) 

Noticing that r = and 
r -r 

exp( -r -r -r 1-1- ) 
from equations (13)-(15), we get . 

exrX = [det(l - r)]-"* : exp 

ePrP = [det(l - r)]-'/* : exp 

r/(i - r) (1 - r1-I - I )  

- r / ( i  - r) (1 - r)-I - 1 
(1 - r)-l - 1 -r/(i - r) 

: 

)A]:. 
Equations (18) and (19) are equivalent to 

,xrf = [det(l - ~ ) ] - I / z  : ex(i-r)- 'i-xi . 
e ~ r P  = [det(l - r ) j - ~ / z  : eP(r-r)-'P-PP . . .  

These are the same results as [9]. but here the calculation is much simpler. 



LQT and normal product calculation of boson EQO 6567 

(ii) exrP.  Here, it is not necessary for r to be symmetric. As far as we know, this E@ 
had not yet been transformed into its normal product form. After transforming it into Fock 
space, we get 

ex'' = exp (i t r r )  exp [ ; A .  1 2 ( - r+F -r-? -r-F -r+F ) za]. (22) 

Denoting S = (i ;I), then S-I = ( 
it is easy to see that 

i) where I is the n-dimensional unit mabix, 

and, therefore, we get the result 

Noticing that 

by equations (14) and (15) we get 

(iv) ea~a~-ulal .  This boson operator has been transformed into normal product form in 131. 
Now we deal with it again using equations (14) and (15). Obviously, it is equivalent to 
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where A = (a?, a:. a l ,  a d  and 01 = ( y  i), Noticing that 

by equation (14) and (15), we obtain 

In fact, after taking out the normal product sign, this is the same result as [3]. 

(v) eLra .eYiAzi. 
is equivalent to 

Here, r and A are two n x n  symmetric complex matrices. This operator 

(31) 
S 2 = e x p [ i A ( &  : ) E A ] ~ X ~ [ ~ A ( ~  0 -2A )Ex]. 

We can regard R as a LQT operator corresponding to the LQT matrix 

Therefore, according to (14), we get 

Actually. this is just equivalent to the result in [9]. Here again, we can see that our approach 
is not only general but also direct and simple. 
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Appendix 

For convenience, we denote H ( N )  = f h N C i \  where N E Chxh.  We shall calculate the 
expectation value of erx(N) in the vacuum state 

(OlerH")lO). 

According to equation (13), N can be written in the following form without any loss of 
generality: 
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where y and ,9 are symmetric matrices. In addition, we assume that elN has the following 
partitioned form: 

where A(r), B( t ) ,  C ( t )  and D(r) E CnX". Evidently, we have 

If we denote 

f ( t )  = (O[e'"(N'lO) 
by using the property of the vaccum state, we have 

From the transformation property of operator er"(N) in equation (6). we know that 
0 = (Ole'H(N)aZ1O) = (O[[b(t)& + C ( r ) a ] [ a t D ( t )  + ZC(t)]e'X(N'lO) 

f ' ( t )  = i(Ol(c?ya + trc)e'X(N)IO). (35) 

= C ( t ) D ( t ) f ( t )  + C(t)(Olnrie'H(N)[o)C(t). (36) 

(OlaZe'"('"10) = -D(r )C( t ) - ' f ( r ) .  (37) 

(Oj~yne'H(N)~O) = - f ( t )  t r [ y ~ ( t ) C ( t ) - ' ~ .  (38) 

(39) 

We assume det(C(t)) # 0, then 

Therefore, we have 

Substituting equation (38) into equation (35), we get 

f ' ( t )  = f(t)f tr[& - yD(t )C( t ) - ' ] .  
From the relation between N and eN, we get 

Eventually, f ( t )  satisfies 

Integrating this and using the condition f(0) = 1, we have 
f ( t )  = exp[-i trInC(t)] = [detC(r)l-''* 

and, therefore, equation (15) is proved. 
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